Distinctive mechanisms of tolerance anticipated for plants indigenous to certain specific areas might provide considerable

Insight into the mechanisms of adaptation to environments where extreme desiccation occurs frequently. In the present study, we demonstrated that P. mileense is a resurrection plant. P. mileense, which grows on rocky outcrops with a six-month dry season in southwest China, could revive after desiccation below 10% RWC and showed several physiological and biochemical phenomena typical of resurrection plants. These include progressively inwardly curled leaves, less ion leakage than that observed in desiccation-sensitive plants, more soluble sugar accumulation than that observed in desiccation-sensitive plants, and no proline accumulation NVP-BKM120 during dehydration. We profiled changes in the composition of membrane lipids of P. mileense under non-lethal and lethal desiccation and subsequent rewatering. We also used the desiccation-sensitive plant A. thaliana for comparison in terms of both physiological and biochemical analyses. During non-lethal desiccation and subsequent rewatering, P. mileense responded by decreasing the abundance of MGDG and increasing the level of lipid unsaturation. Nonetheless, levels of its extraplastidic lipids remained largely unchanged; this response might prevent plasma membrane leakage. In particular, PA and DAG were maintained at low levels similar to those of fresh plants. Upon lethal desiccation, lipid composition decreased substantially owing to dramatic degradation, with large decreases in DGDG, MGDG, PE, PC, PS, PG, and PI and a large increase in DAG; however, the PA content remained low. The level of desiccation that was non-lethal to P. mileense was lethal for A. thaliana, in which the lipids were massively degraded. The degradation of lipids upon rehydration was more severe than that upon dehydration in A. thaliana; all degradation might have occurred through the PA and DAG pools in this species. Interestingly, there was no evidence of PLD activity in P. mileense. Our evidence thus indicates that P. mileense has two distinguishing features. One is that levels of extraplastidic lipids were stably maintained during non-lethal desiccation. The other is that PA was not involved in the process of lipid degradation, even following lethal membrane damage. These distinctive features might contribute to the capacity of P. mileense for resurrection upon rehydration after extreme desiccation. Tolerance and avoidance are two basic strategies by which plants resist environmental stresses. The model of tolerance in resurrection plants was previously described as a two-step process : destruction during desiccation and recovery from this destruction during rewatering. At cellular levels, the two-step process is like that the membrane lipid composition was damaged and then was reconstituted subsequently. A good example is provided in a recent report on Craterostigma plantagineum, in which membrane lipids changed during desiccation and returned to the levels observed in controls after rehydration. Changes in PA content were representative, increasing seven-fold and then quickly returning close to normal during dehydration.

Leave a Reply