The TIMI risk score offers clinical applications as it categorizes patients with a wide, about 5- to 10-fold, range of major adverse clinical events risk into different risk groups. Indeed, patients with intermediate and high-risk scores, in particular those with prior history of PCI and CABG, have been shown to benefit most from an early invasive strategy as compared to low-risk patients. Therefore, a modified TIMI risk score devoid of the biomarker component was used in this study for comprehensive clinical risk assessment at patient admission to the emergency department. In this patient cohort, the clinical TIMI risk score outranged the clinical GRACE risk score in predicting CE at 30 days. These findings might at least in part be due to the different clinical criteria incorporated in the two risk scores and the different weighting of each criterion. While the GRACE risk score focuses more on clinical parameters on admission such as heart rate and systolic blood pressure, the TIMI risk score incorporates patient history including risk factors for coronary artery disease, known coronary artery disease, the use of antiplatelet therapy, and severe episodes of angina. Moreover, the endpoint definition of this study varies from the ones used to validate these risk scoring systems, and limited predictive value of the GRACE risk score has previously been described. However, this study was not designed to allow a comparison between different risk scoring systems, and further studies are needed to compare predictive values of risk scores in different subsets of patients. In ST-elevation patients, distinctive ECG patterns usually determine an early invasive strategy with rare contraindications. However, the heterogenous population of Non-ST-elevation patients requires an appropriate patient selection for early revascularization. Although the combination of clinical parameters or risk scores, respectively with several conventional markers such as c-cTnT and NT-proBNP have occasionally been suggested, our findings show for the first time that integrating clinical and novel cardiac biomarker data including continuous hs-cTnT levels best predicted CE at 30 days in Non-ST-elevation patients. Stand-alone, cardiac biomarkers including hs-cTnT were not better predictors of CE compared to clinical judgment using the modified TIMI risk score. These findings further strengthen the value of traditional clinical practice in assessing the probability that the symptoms represent cardiac ischemia. Both safety issues and limitations of health care resources demand the effective targeting of therapy to those who are likely to benefit most in the heterogeneous population of Non-ST-elevation patients. The use of the highly sensitive troponin assays has substantially increased the number of chest pain patients tested troponin positive. This bears the potential of setting off an avalanche of ischemia-related diagnostics.