This conclusion is based on our observation that JFH1-based GT2a replicons are susceptible

Our findings indicate that conjugated and non-conjugated BAs as well as primary, secondary and tertiary BAs upregulate replication of HCV GT1b replicons in Huh-7 cells. Comparing the influence of BAs between replication competent and replication-inactive Con1replicons, we show that the stimulation by BAs was not due to increased viral RNA stability or RNA translation. This implies that steps directly connected with RNA-replication like for instance establishment of membrane alterations for RNA-replication, recruitment of essential cellular co-factors or activity of essential viral factors are improved in the presence of BAs. More work is needed to find out by which mechanisms BAs facilitate HCV RNA-replication. Using the intragenotypic chimeric infectious GT2a/2a chimera Jc1 we noted a moderate yet dose-dependent and reproducible stimulation of RNA-replication of this full length genome by BAs. Since this effect was maintained in cells that lack endogenous levels of CD81, a crucial cell entry factor for HCV, we can rule out that this effect was due to increased virus production and secondary rounds of infection. Further analyses established that BAs did not augment the number of secreted viruses or Atractylenolide-II increase cell entry. Importantly, we used HCVpp and HCVTCP particles to rule out that BAs modulate cell entry through interplay with lipoproteins which cannot be well studied with HCVpp. Although it has been described previously that high levels of BAs increase the activity of cellular lipoprotein lipases which in turn have been shown to decrease HCV infectivity and despite of the observation that BAs downregulate secretion of ApoB containing lipoproteins we did not find entry or assembly to be affected. This could be due to the host cells used by us expressing abundant lipoproteins and cell entry factors so that a subtle regulation of these factors by BAs may not be sufficient to have an impact on these steps of the HCV replication cycle. Alternatively, the cancer cell lines used by us may not reflect the complete spectrum of the regulatory functions on lipoprotein biosynthesis and secretion operating in vivo. Therefore, additional work is needed, ideally with primary human hepatocytes, to fully rule out that these steps of the HCV replication cycle are regulated by BAs. In addition, we provide evidence that the regulation of HCV RNA-replication is likely not limited to GT1 isolates as described previously but also Atractylenolide-I affects GT2a genomes. This conclusion is based on our observation that JFH1-based GT2a replicons are susceptible to regulation by BAs provided their extraordinary efficient RNA-replication is reduced by genetic manipulation of the non-translated regions. Importantly, we reduced RNAreplication of these replicons by manipulating viral non-coding regions to rule out that non-GT2a proteins may confer regulation by BAs to these chimeric genomes. Besides we show that each individual non-coding RNA segment derived from Con1 is not sufficient to confer regulation of GT2a genomes by BAs. Since both genomes carrying either the Con1 59NTR or the X-tail replicate vigorously in transfected cells, we hypothesize that like for the parental GT2a replicon, the high replication efficiency masks the influence of BAs on these replicons. The conclusion that not only GT1 but also GT2a replication is enhanced by BAs in cell culture is also supported by the increased replication of full length GT2a genomes both in a Huh-7-derived cell line as well as in an alternative HCV-permissive human hepatoblastoma cell line. Finally, we report that not only cell culture adapted Con1 genomes but also wild type Con1 replicons and full length genomes are stimulated by BAs. Moreover, this stimulation of replication – albeit moderate – did not increase release of core protein.