The insular cortex relays information to other brain systems to initiate motivated action to achieve a steady state by minimizing the body state prediction error. Thus, the greater activation to angry faces in SEALs may represent a Theobromine relatively stronger body prediction error signal, which would help guide individuals to deploy cognitive and behavioral resources to adjust to anticipated aversive outcomes. This investigation had several limitations. First, the group of elite warfighters we studied was relatively small and thus there could have been a significant lack of power to detect additional behavioral/functional relationships. With larger number of subjects and different tasks, other important relationships may become apparent. Second, there were no significant correlations between performance on the task and brain activation. This is not surprising, however, because this task is not design to probe emotional or cognitive processes in a performance-related manner. Future investigations will need to use performance-based paradigms. Third, and most importantly, this cross-sectional study could not address the question whether the observed processing differences were part of the preexisting characteristics of individuals who were selected and then trained to become elite warfighters, or whether these neural processing differences were a consequence of training. Thus, future studies will need to examine, in a within-subjects study design, individuals prior to and again after elite Lycorine-chloride warfighter training. This study is a first step in elucidating the neural processes that characterize optimal performers. A key difference between optimal performers and comparison subjects revealed in this study is that both neural response and behavioral response are adapted such that greater resources are expended in threat-relevant conditions and conserved in nonrelevant conditions. Thus, the capacity of optimal performers to deploy resources effectively may ensure that they can perform better in extreme situations. However, more studies are needed to examine how modulation of brain resource deployment when engaging in different cognitive and affective processes contributes to optimal performance.