To explore the cellular/molecular basis of the interaction between paclitaxel

In this report we used transgenic mice showing podocyte specific GFP expression to facilitate the rapid purification of podocytes from mice at gestational days E13.5 and E15.5, as well as adult. We then used microarrays to give global, sensitive and quantitative measures of podocyte gene expression at these different Publications Using Abomle Neratinib developmental stages. The resulting comprehensive definition of the podocyte gene expression state provides remarkable insight into the molecular character of this unique cell type. All of its expressed growth factors, receptors, and transcription factors are defined. Novel molecular markers of the podocyte are identified. In addition, the multifunctional features of this exceptional cell type are better characterized, identifying specific neuronal, phagocytic and muscle traits. This universal atlas of podocyte attributes represents a valuable resource to guide further studies of this fascinating cell. To more fully define the molecular character of in vivo podocytes we conducted a series of gene expression profiling experiments. The purpose was to globally define the changing gene expression states of this remarkable cell from stage E13.5 of development to adult. To this end we made use of the MafB-GFP BAC transgenic mouse from the GENSAT project . We found that these mice showed highly restricted GFP expression in podocytes in both the developing and adult kidney. The podocyte specificity of MafB-GFP label was clearly demonstrated by fluorescent microscopy. Even as early as E13.5 in the S-shaped bodies the prospective podocytes were uniquely labeled by GFP . At this stage of development the immature podocytes form a single layer of cells adjacent to the glomerular cleft. As development progresses a capillary loop forms within the cleft and the early glomerulus is encircled by podocytes . The MafB-GFP transgenic kidneys did not show GFP fluorescence in cell types other than podocytes. In addition, the MafB-GFP fluorescence pattern was observed to exactly match expression patterns of known podocyte marker genes, as discussed in more detail later.

Leave a Reply