Demonstrated that FITC-YARA uptake of the MK2-inhibitor peptides was investigated

Polyacrylamide gels were chosen as the model substrate for this VE-821 experiment because stiffness can be modulated by changing the percentage of bisacrylamide crosslinker within the system. Additionally, polyacrylamide gels are clear, non-fluorescent, and have the ability to covalently link proteins to the surface. Unlike most other systems, polyacrylamide gels are inert to protein adsorption and cell adhesion; thus, cellular adhesion can be controlled by functionalizing the gels with an extracellular matrix protein. The adhesion of cells to the gel is then solely attributed to cellular binding to the ECM protein. To confirm that uptake occurs through similar mechanisms on the soft polyacrylamide gel compared to tissue culture plastic, we characterized the mechanism of uptake by treating the cells with FITC-peptide at 4uC to determine if uptake is PF-4217903 956905-27-4 energydependent and with a pharmacological inhibitor of caveolae-mediated endocytosis, methyl-b-cyclodextrin. Figure 7A and B shows that uptake of FITC-YARA on soft substrates is inhibited at low temperatures and is inhibited with MbCD pretreatment, similar to what has been observed on tissue culture plastic. In addition, we were interested in evaluating uptake as a function of initial seeding density. As shown in Figure 8, seeding density does change the uptake of FITC-YARA. A high initial cell seeding density decreased the amount of FITC-YARA that was endocytosed by mesothelial cells seeded on soft substrates compared to tissue culture plastic. This was completely opposite of what was observed at a lower cell density and agreed with functional results: increased cell density decreased uptake of peptide and efficacy of cytokine suppression. Because cells cultured on tissue culture polystyrene showed more pronounced actin stress fibers than those grown on polyacrylamide substrates, we evaluated the effect of actin filaments on YARA uptake using flow cytometry. Using LPA, we induced actin filament formation and using cytochalasin D we disrupted actin filament formation. While cells treated with peptide showed an increased fluorescent signal, indicative of peptide uptake, as compared to untreated cells, treatment with LPA, or treatment with cytochalasin D, had no effect on peptide uptake. This data suggests that peptide uptake is not affected by actin polymerization. Endosome trafficking is dependent on microtubules, thus, nocodazole was used to interfere with microtubule polymerization to evaluate the effects of microtubules on peptide uptake. Cells treated with nocodazole showed a pronounced increase in YARA uptake, in a dose dependent manner, as compared to untreated cells. This data confirms the importance of microtubules in YARA uptake or trafficking. In this paper, we provide evidence that matrix stiffness regulates intracellular uptake of MK2-inhibitor peptides. Not only is there an increase in uptake as observed by flow cytometry, but there is a functional difference as characterized by the production of proinflammatory cytokines. Based on the quantification of surface fibronectin protein, which showed equivalent amounts of ECM protein between the soft and stiff polyacrylamide gel, the difference in YARA uptake can be attributed directly to the effect of stiffness. Characterization of the fibronectin protein is important because several investigators have demonstrated that cells respond morphologically to varying amounts of matrix proteins. We wanted to ensure that the cell response observed could be appropriately attributed to matrix stiffness and not the matrix proteins. Importantly, the mechanism of uptake of FITC-YARA does not appear to change when cells are seeded on soft substrates. Mesothelial cells seeded on tissue culture plastic show inhibition of uptake at 4uC and with the removal of cholesterol using the pharmacological inhibitor, MbCD.

Leave a Reply